NoSQL databases are designed to be simple when compared with relational databases, yet they sometimes seem complex to new users. In this article, we’ll explore the NoSQL architecture to help bring you up to speed.

When you leverage the right solution for the amounts and types of data you’re dealing with, then you’ll make life much easier for yourself.

First, you need to know what types of storage options are available to you. In general, you can store and retrieve data using any of the following:

Spreadsheets (i.e. Microsoft Excel)
Relational Database (i.e. SQL)
Non-Relational Database (i.e. NoSQL)
Spreadsheets are best for small datasets. For instance, when you’ve got less than 10,000 records to manage, you can easily store them in rows within a single spreadsheet. Later, Best Database Provider you can quickly search that spreadsheet to find the exact data you need.

Relational databases are a step up from spreadsheets. When you’ve got 10k+ records, or when you’ve got multiple spreadsheets with 10k+ records, then it makes sense to use a relational system that is designed to quickly store and retrieve data across multiple systems (spreadsheets).

As you continue to scale up toward big data, and as your datasets become more complex, you eventually reach a point where relational databases become inefficient. To get real-time analytics, and to deal with more sophisticated records, you need a faster, more powerful alternative, and that’s where the NoSQL database comes in.

Looking for an innovative NoSQL solution?

Now that you have an idea of the uses for different types of systems, let’s explore how data is actually stored within NoSQL.

NoSQL Data Store Options

Non-relational databases are powerful storage systems that emerged in the early 2000s. They’re designed to manage large volumes of unstructured data, return real-time web app analytics, and to process big data across the internet of things (IoT).

Within the NoSQL system, there are multiple ways to store and retrieve records that surpass the limitations of relational systems. The primary ways data can be stored in NoSQL include:

Key-Value Store
Document Store
Column Store
Graph Store
Time Series Store
Some NoSQL databases work with more than Best Database Provider one type of record store. Most non-relational systems use one to three of the above. A select few, such as BangDB, offer queries across all five.

Key-Value Store
The key-value store is a database system that stores records as sets of unique identifiers with an associated (paired) value. This data-pairing is referred to as a “key value pair.” The “key” is the unique identifier. The “value” is the data being identified, or its location.

A major benefit of key-value stores is that they are fast for data retrieval. Where relational systems store data across rows and columns, and need to query across the database to return a record, the key-value store is more flexible and only has to search for the key, then return the associated value.

Due to the speed of returns, and their flexibility, key-value stores are particularly useful in certain cases such as:

Storing, recalling, and updating product information, pricing, categories and other ecommerce related functions.
Storing user details, preferences, and session information for rapid recall and rewrites.
Generating real-time data to provide relevant advertising as users move through different areas of a platform or website.
The ability to minimize reads and writes, and to quickly locate datasets based on unique identifiers makes the key value store a blazing fast option that outperforms relational databases in almost every way for businesses that deal in retail, advertising, ecommerce, and other web applications.

Document Store

Another storage option, the document-store, stores data in a semi-structured document. The data can then be ordered with markers.

Information in this data type needs to be encoded in XML, JSON, BSON or as a YAML file, and is never stored in a table (which is why it is unsuitable for relational storage). Instead, complex datasets are contained in a single record.

Retrieval occurs when a key is used to locate the document, and then that document is searched for the information required.

A benefit of the document store is that different types of documents can be contained within a single store, and updates to those documents do not need to be related back to the database.

Also, because there are no fields within this store, and therefore, no empty cells for missing records, the document store is incredibly efficient at returning data fast.

Document stores are highly useful when:

When working with JSON, BSON, XML, YAML files
You need to make changes to your data schema often
When you work with unstructured or semi-structured data
When you need something simple for development
Document stores are flexible, easily scalable, and developers can work within them, even without prior knowledge of the system. These benefits make them a worthy tool for web applications, and for handling big data in a sensible manner.

Column Store
Column-based stores record data in columns, rather than in rows. By storing data in columns, it is contained as a single, ongoing entry. This minimizes the number of disks accessed, and avoids pulling in unnecessary memory, which speeds up record retrieval since a query does not need to pass over irrelevant rows to return information. Instead, only the information within the column is queried.

Column stores are most frequently used by companies that deal with large data warehousing setups. The data is structured as a table with columns and rows, and is then stored logically in a column-wise format so irrelevant data does not have to be bypassed before the target data is accessed and returned.

Column store databases are best for:

Applications with many reads and few writes
When your data has a lot of repetitive records for each value
Data warehousing operations
Increasing retrieval speed and decreasing memory usage
Column stores can save you time and computing power, especially when you have a lot of information that repeats, such as rows of names, addresses, phone numbers, and any other records that might be stored under individual data points.

Graph Store
For some businesses, relationships and connections between data take priority, so a graph store makes the most sense. Graph stores represent data in graphs instead of tables which makes them highly flexible and easily extendable.

The graph store database returns search results fast and speeds up indexing by representing data as networks of nodes and edges. In a graph store, data is stored in nodes, and then connected with relationships in edges which are then grouped by labels.

Graph stores are most useful for things like:

Data visualization and graph-style analytics
Fraud prevention and enterprise operations
Geospatial routing
Payment systems
Social networking systems
They’re best at querying related datasets, although they may not be as efficient when working with big data which can slow their process down.

Time Series Store
A final NoSQL data store option is the time series store which is primarily used for managing datasets that change over time. Time series store captures fixed and dynamic value sets and returns timely analytics.

Imagine a car lot with multiple cars. The time series store might have a fixed value data point for each car, and then tracks the dynamic values within each car such as oil levels, tire pressure, etc. alongside a timestamp to allow the end user to see how these metrics have changed over time.

Time series stores are valuable for:

Continuously capturing a stream of metrics
Analyzing datasets over periods of time
Predictive analysis (i.e. predicting when a car’s oil will need to be changed)
Monitoring the status of various systems with easily accessible analytics
Time series store is best for businesses where multiple systems require ongoing measurements within individual data points.

Which NoSQL Storage Option is Right for You?

As any good developer will tell you, there is no one-size-fits-all solution. Each business is different and Best Database Provider has unique storage needs.

When you deal with small volumes of structured data, then individual spreadsheets or relational databases can be a good fit; however, as your need for big data and real-time information increases, you will need to upgrade to a non-relational database.

From there, you will have to decide which storage solutions make the most sense for your business based on what you want to accomplish and the types of data you work with.

Leave a Reply

Your email address will not be published.